

TANK 40 微波消解仪操作规程

一、实验员及环境要求

1、实验人员要求

穿戴好实验服、护目镜和防护手套等安全防护措施。遵守实验室规章制度。未经正规培训者严禁 操作以免出现意外。

2、仪器周围环境要求

仪器应远离酸气、潮湿、粉尘、散热通风不畅、环境高温等不适环境。保证电压稳定且必须有良好接地。

二、清洗罐

- 1、在酸缸中浸泡
 - ①、内罐、密封盖、罐盖可用稀酸浸泡,常用 10%(m/m)HNO₃。
 - ②、测温主罐盖可竖直插入小烧杯浸泡,测温管外表面及罐盖下面。主盖测温管内严禁进任何液体必须保证测温管内绝对干燥
 - ③、用去离子水冲净,晾干;如急用,60℃以下烘干。
- 2、用酸蒸法清洗
 - ①、每个罐准确量取 8mL 浓 HNO3, 按要求装罐。
 - ②、用 150°C-5min;180°C-20min 加热。待温度降至 80°C以下时拆罐。
 - ③、用去离子水冲净,晾干;如急用,60℃以下烘干。
- 3、若有污物可用软棉布、纸巾蘸水擦拭;若擦拭不掉,可洗洁精等清洗;最后用酸浸泡法或酸蒸汽法清洗。严禁使用硬质毛刷。

三、取样

- 1、内罐已编号,记录罐号及相关信息。
- 2、常规取样量: 有机样品每罐取样 300mg 内, 无机样品每罐取样 500mg 内。
- 3、不熟悉的样品称样量消解时应严格地限制在100mg内。
- 4、油脂建议 300mg 内, 必须预处理。
- 5、水质样品(非废液),试剂和样品的总体积占消解罐容积的三分之一。
- 6、固废浸出液取样 8mL 以下,加酸后静置至少 30min。
- 7、废液取样 100mg 以下,必须预处理。
- 8、同批消解样品应同类、同量,初始状态一致,不可同时混合消解不同性质的样品。
- 9、加样时避免挂壁,如有样品挂壁在加消解试剂时小心冲下。
- 10、消解金属样品时不允许样品为长条形,应尽量粉碎过筛。
- 11、严禁消解危险品、易燃易爆品(有机溶剂、TNT、硝化甘油等)、浓碱或盐溶液(易结晶烧罐)。
- 12、脂类、有机物含量高的样品、反应易产生大量气体的样品及含有机溶剂的样品需预处理(一般使

用配套电热板预加热,如果测汞砷等易挥发元素,设置在 100℃以下,其他元素可设置到 150℃)。四、加酸、预处理

1、加酸量

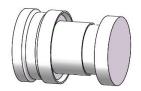
- ①、试剂量要求 8mL(110mL 罐为 12mL 红外测温时至少 5mL);如做萃取、合成实验,溶剂中必须含有极性物质(可查看附录部分常用有机溶剂的极性表或物性手册),且溶剂量至少 8mL(110mL 罐为 12mL 红外测温时至少 5mL),总液体量应在消解罐容积的三分之一内。
- ②、如果相关标准加酸量少于 8mL(110mL 罐为 12mL 红外测温时至少 5mL),可根据酸的种类及其注意事项将酸体积补加至 8mL(110mL 罐为 12mL 红外测温时至少 5mL)。
- ③、加酸量必须一致。

2、酸体系

- ①、同批消解试剂应同类,初始状态一致。
- ②、浓 H_2SO_4 必须和 $HCl、HNO_3$ 等低沸点酸混合使用;降低沸点,保护罐体, H_2SO_4 的比例不能过高。
- ③、H₂SO₄、H₃PO₄在消解过程中会产生高温,使用时应该严格控制温度。
- ④、HClO₄和有机物反应过于激烈,会释放大量气体,严禁使用,可在后期赶酸时加入。
- ⑤、一般 H_2O_2 加液量在 2mL 以内, H_2O_2 应缓慢滴加,静置至少 30min 确保反应平静,气泡消失再组装罐。
- ⑥、浓 H₂SO₄、HClO₄、H₂O₂严禁混合使用。

3、预处理

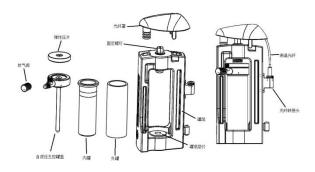
- ①、如遇大部分固体样品(特别是金属类),将其碎化为粉末、碎屑或小粒径试样,甚至过筛处理,因样品粒径过大或是整块的物质时反应的表面积较小,以致消化反应速率较慢,或消解不完全;固体类样品需让其完全浸没在消解试剂中,以防金属打火或吸收微波高温灼伤罐体。
- ②、含有机溶剂的样品(如白酒、化妆品等)必须挥干有机溶剂后,再进行微波消解。 例如:高浓度白酒:将装好酒类样品的内罐放在水浴锅或电子控温加热板(ECH型电子控温加热板)上加热,并不时摇动内罐;待样品体积挥发至原体积的 1/5 时,将其取下冷却后再加酸,进行微波消解。
- ③、样品中含有大分子及高分子有机物(如:原油类,脂肪、高聚物、危废等)时,必须更严格控制称样量,建议小于0.100g,且需进行预加热处理。
- ④、有些能直接吸收微波能量的无机物,进行微波消解时,必须特别小心,慎重做样,一般要电 热板上预加热处理,避免局部过热导致容器损坏。
- ⑤、如遇常温下试样与消解试剂反应剧烈者,必须待反应结束或平缓后才能够组装消解罐体。
- ⑥、电热板预加热温度,如果测汞砷等易挥发元素,设置在 100 °C以下,其他元素可设置到 150 °C。


五、组装及放置罐

1、组装12位超高压罐

a) 用密封杯盖扩张器对各罐盖扩口,确保密封杯盖扩张器清洁无污染。将罐盖与密封杯盖扩张器 对接压到底,旋转,稍静置。

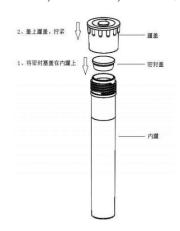
b) 将用密封杯盖扩张器扩口后的罐盖盖至内罐, 并装入外罐中。


- c) 将罐放至罐架,压力接口与罐架间成30°。测温罐盖有光纤插孔和压力导管接口,用于光纤控温测压;测压罐盖用于红外控温时测压。
- d) 用手预拧紧安全泄压片, 确保安全泄压片与罐盖凹槽吻合, 用 2N·M 扭力扳手拧紧安全泄压片, 有机械跳脱感时立即停止。
- e) 将测温光纤插入主控罐,确保插至底部,盖好光纤保护罩,将光纤插头连接至 HP 接头,转接 光纤与 HP 接头底部连接。不要压、砸、弯折、磕碰光纤,光纤不得接触酸、碱、油脂等
- f) 将组装好的罐转移至炉腔(按附录中的对应 12 位转盘位置摆放图摆放),依次将传动杆、压力导管(有标识端与主控罐盖/测压罐盖连接)、光纤与主机连接。

2、组装12位高压罐

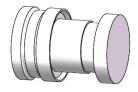
a) 将罐盖上的放气阀顺时针拧紧。

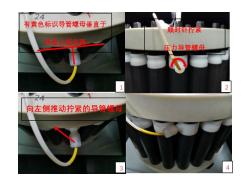
b) 弹性压片凸起对应放至主控罐盖凹槽,将加有弹性压片的主控罐盖盖至内罐,内罐放至一个干净并且干燥的外罐中,把整套组件安装到罐架上,确保外罐紧贴垫圈凸起。放气阀应朝向罐


架缺口处。

- c) 用手预拧紧固定螺钉,压力接口与罐架间成 30°, 用 6N·m 扭力扳手拧紧固定螺钉, 有机械跳 脱感时立即停止。
- d) 将测温光纤插入主控罐,确保插至底部,盖好光纤保护罩,将光纤插头连接至 HP 接头,转接 光纤与 HP 接头底部连接。不要压、砸、弯折、磕碰光纤,光纤不得接触酸、碱、油脂等
- e) 将组装好的罐转移至炉腔(按附录中的对应 12 位转盘位置摆放图摆放),依次将传动杆、压力导管(有标识端与主控罐盖/测压罐盖连接)、光纤与主机连接。

3、组装 40 位高压罐

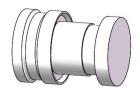

a) 盖好密封盖将密封塞平稳盖在内罐上, 盖上罐盖, 如下图。

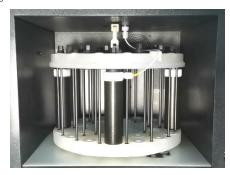

- b) 保证每个内罐都已装配密封盖、罐盖, 戴橡胶手套用拧罐器拧紧至有机械跳脱感。
- c) 按位置摆放图(附录 40 位高压罐位置摆放图)将内罐放至转盘,罐盖螺纹凸起底部应与转盘 上板紧密贴合。
- d) 将装好罐的转盘转移至炉腔。

4、组装 40 位超高压罐

a) 用密封杯盖扩张器对各罐盖扩口, 确保密封杯盖扩张器清洁无污染。

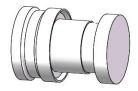
- b) 测温罐盖有光纤插孔和压力导管接口, 用于光纤控温测压; 测压罐盖用于红外控温时测压。
- c) 将罐盖盖至内罐,将内罐插入外罐中,把整套组件按位置摆放图(附录 40 位超高压罐位置摆放图)安装到转子上。光纤测温/测压罐应置于1号位。
- d) 保证安全泄压片与罐盖凹槽吻合,用 21 档电动扳手或 2N·m 力扳手拧紧至有机械跳脱感。
- e) 将测温光纤插入主控罐,确保插至底部,压紧光纤套塞,将光纤插头连接至 HP 接头,转接光 纤与 HP 接头底部连接。
- f) 将转盘转移至炉腔, 依次将传动杆、压力导管(有标识端/长螺母与主控罐盖、测压罐盖连接,




并向左侧转动测压接口)、光纤与主机连接。

5、组装24位超高压罐

a) 用密封杯盖扩张器对各罐盖扩口,确保密封杯盖扩张器清洁无污染。


- b) 测温罐盖有光纤插孔,用于光纤控温;测压罐盖用于测压。
- c) 将罐盖盖至内罐,将内罐插入外罐中,把整套组件按位置摆放图(附录 24 位超高压罐位置摆放图) 安装到转子上,光纤测温罐应在 1 号位,测压罐应在 9 号位。
- d) 保证安全泄压片与罐盖凹槽吻合,用 21 档电动扳手或 2N·m 力扳手拧紧至有机械跳脱感。
- e) 将测温光纤插入主控罐,确保插至底部,压紧光纤套塞,将光纤插头连接至 HP 接头,转接光纤与 HP 接头底部连接。

f) 将转盘转移至炉腔, 依次将传动杆、压力导管(有标识端/长螺母与测压罐盖连接, 并向右侧 转动测压接口, 压力导管需在挡销下绕过)、光纤与主机连接。

6、组装 18 位超高压罐

a) 用密封杯盖扩张器对各罐盖扩口, 确保密封杯盖扩张器清洁无污染。

- b) 测温罐盖有光纤插孔和压力导管接口,用于光纤控温测压;测压罐盖用于红外控温时测压。
- c) 将罐盖盖至内罐,将内罐插入外罐中,把整套组件按位置摆放图(附录 18 位超高压位置摆放图)安装到转子上。
- d) 保证安全泄压片与罐盖凹槽吻合,用 21 档电动扳手或 2N·m 力扳手拧紧至有机械跳脱感。
- e) 将测温光纤插入主控罐,确保插至底部,压紧光纤套塞,将光纤插头连接至 HP 接头,转接光 纤与 HP 接头底部连接。
- f) 将转盘转移至炉腔, 依次将传动杆、压力导管(有标识端/长螺母与主控罐盖、测压罐盖连接,

并向左侧转动测压接口)、光纤与主机连接。

七、方案设置

- 1、点击编辑进入方案编辑界面。
- 2、点击方法库"+",可以新建方法库并命名。如需删除方法库,选中向左拖动,点击"删除"即可。

- 3、根据需要选择对应方法库,点击方法"+",新建方法。如需删除方法,选中方法,向左拖动,点击"删除"即可。
 - ①、输入方法名称。
 - ②、阶段,阶段为目前界面设置或修改的阶段。
 - ③、选择控制类型为"标准控制"(仪器有"标准控制、爬坡控制、功率控制",标准控制是最佳的控制类型,且操作简便)。
 - ④、设置该步目标温度,点击方框,输入温度(温度数值建议 120~210℃,红外测温时最高温度建议 200℃)。
 - ⑤、设置保温时间,点击方框,选择对应时间即可。
 - ⑥、总结段数、根据实验需要设置、点击"+"则为2段、重复步骤①-⑤。
 - ⑦、点击保存,可保存方法。
- 4、消解温度设置原则。
 - ① 多个阶段梯度升温。
 - ② 第一段最低温度为 120℃, 必须达到试剂的沸点。
 - ③ 建议每段间温度升幅 20-30℃。
 - ④ 常见有机物最高消解温度在 180℃内; 无机物最高温度应在 210℃(红外测温时最高温度为 200℃)内。

⑤ 萃取、合成实验目标温度根据有机溶剂沸点而定,一般不超过沸点 1.5 倍,最低 120°C,最高温度应在 210°C(红外测温时最高温度为 200°C)内。

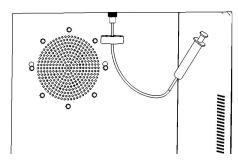
八、运行方案

1、点击"消解"(默认登录为消解时开机自动进入)。

- 2、点击"方法选择",选择所需方法库及对应方法,点击"确定"。
- 3、点击"OK"仪器开始运行。
- 4、仪器升温过程中注意观察,温度应有规律上升;如果温度上升变慢,停顿或下降,应停止加热检查罐是否拧紧。
- 5、温度变化不超出±10℃,如异常按停止键并远离仪器,等罐体冷却接近室温,检查并调整处理方案。
- 6、运行时仪器长时间升不到目标温度应停止加热,待降温至室温,重新拧紧罐盖,调整方案运行。

九、取罐、赶酸

- 1、待温度降至80℃以下(如测汞砷建议温度降至60℃以下),才可取出转盘。
- 2、取40位高压罐及赶酸。
- ① 将转盘转移至通风橱。
- ② 待温度降至室温后用取罐器将内罐部分与转盘分离。
- ③ 取出内罐,缓慢拧松罐盖泄压。
- ④ 将罐盖、密封盖取下。
- ⑤ 根据需要,将内罐放入赶酸器进行赶酸,可参考赶酸器操作步骤。
- 3、取12位高压罐、超高压罐及赶酸。
- ① 依次断开传动杆、光纤与主机的连接。
- ② 缓慢拧松压力导管泄压,将转子整体移出,转移至通风橱。
- ③ 取下测温光纤及转接光纤(取测温光纤时应先向上拔出硅胶套再拔光纤插头)。
- ④ 缓慢拧松放气阀,使用不锈钢小扳手将所有固定螺钉/安全泄压片缓慢拧松。当不再有酸雾溢出,继续拧松固定螺钉/安全泄压片,直到可以取出消解罐为止;将消解罐取下,借助顶板顶出内罐,外罐擦拭清洁干净后妥善保存。
- ⑤ 缓慢开启罐盖。
- ⑥ 根据需要,将内罐放入赶酸器进行赶酸,可参考赶酸器操作步骤。



十、仪器关机前清洁

1、清洗压力导管

- a、 将压力导管从测压接口上取下。
- b、 取一只注射器(可不安装针头)抽满纯水,冲洗压力导管,重复冲洗多次,晾干。
- 2、清洗压力传感器

- a、 注射器抽满纯水, 连接好清洗压力传感器的工装。
- b、 冲洗压力传感器接口, 重复冲洗多次, 晾干。
- 3、用抹布(用肥皂水清洗抹布并拧干)清洁炉腔,清洁时注意避开摄像头及传感器区域。晾干后将安全门关闭、关机、断电。

十一、保养事项

- 1、每日使用后保养
 - ① 可用肥皂水清洗并拧干的布清洁。
 - ② 实验结束后取出转盘/整体式罐架,清洁转盘/整体试管架。
 - ③ 清洁炉腔及安全门(除传感器及摄像头区域)。
- ④ 确认红外镜片、激光镜片干净清洁,如有污渍可用洗耳球吹扫清洁,如仍有污渍可用水润湿的脱脂棉清洁。发现破损可联系售后服务热线。
 - ⑤ 确认摄像头镜片清洁,如有污渍脱脂棉蘸纯水清洁,如有破损应更换。
 - ⑥ 清洗压力导管及压力传感器螺母(仅可测压版本):

用吸满纯水的清洗工装,清洗压力传感器及压力导管 2~3次。

- ⑦ 消解罐的寿命因为使用条件和操作习惯的不同而不同,每次使用都要检查罐的老化磨损情况:
 - a. 将内罐置于水平的桌面上, 观察内罐应无法晃动, 如能晃动需更换。
 - b.用手触摸内罐边缘,检查各罐的罐口位置应平滑,如有划痕、凹陷或凸起需更换。
 - c. 检查罐盖裙边无变形,如有褶皱或变形需更换。
 - d.主控罐盖测温插管内不得有污渍、水或酸液,如有污渍,需用异丙醇冲洗再用纯水冲洗干净烘干冷却后再使用。
 - e. 检查各罐的密闭性,将任意罐盖盖至各罐,确保用密封杯盖扩张器扩口后的罐盖与各罐密封性好,有密闭感,如没有密闭感需更换。
 - f. 检查各罐及罐盖如果发现破裂或者严重变色时必须更换。
 - g. 检查外罐是否有任何的损坏和变形。每次消解结束后用湿布擦干外罐。如果发现掉皮或者任何的损坏必须更换。

2、每月保养

检查安全泄压片有无老化变形(仅超高压版):

- a.徒手拧动安全泄压片,可以一次性旋转 360 度,各安全泄压片阻力感基本一致,可顺畅 拧出,如不顺畅需更换。
- b.用肥皂清洗过并拧干的布清洁表面,检查安全泄压片外观一致,有无歪斜、根部有无出现 裂痕,如损坏需更换。

3、每季保养

- ① 检查辅助设备密封杯盖扩张器、不锈钢小扳手、扭力扳手、电动扳手(仅高通量仪器配备电动扳手)老化情况:
 - a. 清洁密封杯盖扩张器,观察其扩张区域无破损、变形,用密封杯盖扩张器扩张各罐盖可撑开罐盖裙边,如无法撑开建议更换密封杯盖扩张器。
 - b. 检查扭力扳手扭力应在 2N·m 位置。
 - c. 检查扭力扳手无锈蚀情况,清洁表面并在除棘轮和调节环部位涂抹凡士林。
 - d. 检查电动扳手应在 21 档, 严禁拧至电钻机标识处。
 - e. 将电动扳手电池充满电、转速 LOW 档、扭矩 21 档,连续拧紧后拆卸 40 个安全泄压片,可正常使用,如拧紧无机械跳脱感需更换电池或用手动扭力扳手。
 - ② 检查转盘/罐架老化情况:
 - a. 将转盘放至平稳的桌面,徒手转动滚珠感受应无卡顿,如卡顿可联系售后服务热线。
 - b. 检查转盘各部件无变形、烧坏部位,如异常需更换。
 - c. 清洁罐架、并检查独立式罐架,罐架无老化、变形或裂痕。如异常需更换。
 - ③ 检查传感器装置老化情况:

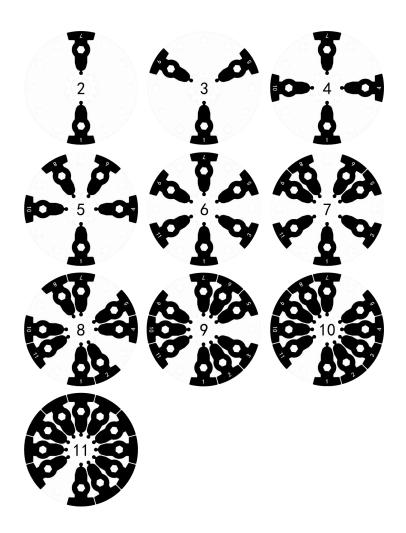
徒手转动传感器装置, 可顺畅转动, 如不能可联系售后服务热线。

- ④ 检查温度传感器老化情况:
 - a. 光纤温度传感器无弯折、挤压、变形,与仪器连接后室温正常,如温度为0或非室温需更换。
- b.红外镜片更换时检查红外镜头表面应清洁,如有污渍可用洗耳球吹扫清洁,如仍有污渍可用水润湿的脱脂棉(不滴水状态)清洁。发现破损可联系售后服务热线。
- ⑤ 检查压力传感器老化情况(仅测压版本):

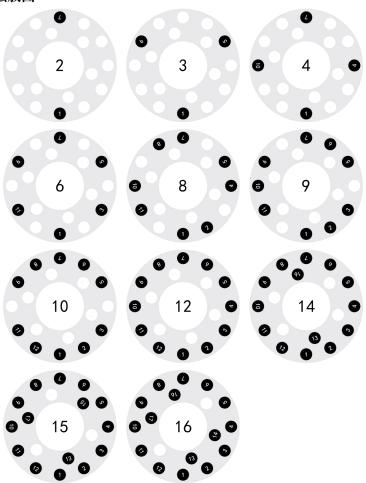
- a. 压力导管螺母可顺畅拧至压力传感器螺母/测压螺母,压力导管接口锥形无变形,如拧动不顺畅、接口锥形变形需更换。
- b. 用清洗工具用力清洗压力传感器时可在运行界面看到会有压力值,清洗结束后归零。如无法归零或处于 某一值可联系售后服务热线。
- ⑥ 检查旋转系统
 - a. 点击 turn 键, 电机可转动, 如异常可联系售后服务热线。
 - b. 观察传动六方/转盘三角无老化变形、烧焦等现象,如变形、烧焦需更换。

4、每年保养

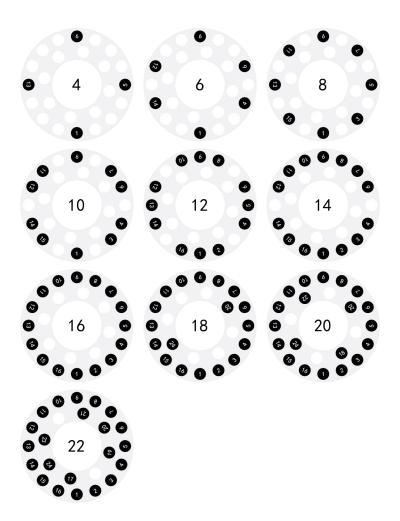
- ① 清洁排风管、清洁仪器进出风口。
 - a. 取下排风管,用自来水冲洗排风管内部再清洁外表面,晾干后装回。
 - b. 清洁仪器左右侧进出风口。
- ② 清洁空气滤网。
 - a. 向侧面/底部移动拉出过滤网。
- b. 用水由内向外冲洗过滤网,由于过滤网比较软,清洗时须拿住边框,以免过滤网受挤压而变形,影响进风量。
 - c. 必须将空气滤网晾干或烘干后装回,装回时注意不要装反。


十二、注意事项

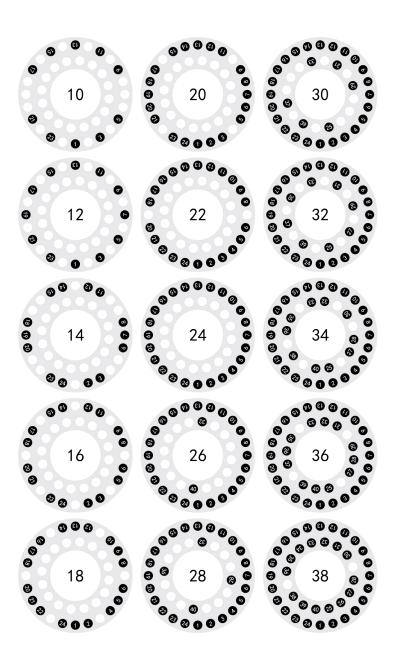
- 1、必须做好个人防护操作。未经培训人员严禁操作仪器,操作仪器前必须熟读本规程和仪器附带说明书。
- 2、空白罐仅不添加样品,其他步骤与做样一致。严禁仪器空载运行。
- 3、禁止在微波系统内加热:双组分混合物、硝酸甘油酯,硝化甘油或其他有机硝化物、炸药、推进剂、引火化学品、航空燃料、二元醇、酮类、醚类、烷烃、炔烃、高氯酸盐、丙烯醛
- 4、避免使用高氯酸消解样品。
- 5、光纤温度传感器严禁弯折、挤压。
- 6、保证机器自动计数的消解罐数量正确的前提下,尽量不要修改罐数设置。
- 7、反应罐各部件必须干燥且无污染物的状态。为防止罐体局部吸收微波后温度过高、损坏罐体。
- 8、消解未知样品或者探索性实验时操作过程中存在诸多不确定性,需谨慎操作,必须预处理。严格 控制取样量,密切关注消解温度变化。
- 9、不推荐微波加热高浓度碱性或盐溶液。因为盐分的析出或者产生结晶结构,会聚集于反应罐内壁上,这些物质吸收微波后可能会引起反应罐局部过热导致反应罐损坏。
- 10、不要把仪器置于通风橱内且保证仪器背部及左右两侧距墙面至少 25cm。酸雾和其他化学试剂会损坏电路和安全互锁门等器件。
- 11、新旧罐不得混用(新旧罐子通过颜色可区分)。旧罐(已使用的罐)可以 200℃,烘干 30min, 自然冷却后才和新罐子通用。


十二、附录

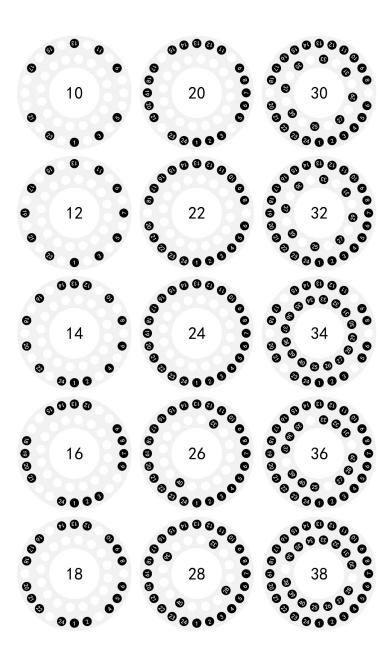
12 位独立式罐架位置摆放图



18 超高压消解罐位置摆放图



24 位超高压消解罐位置摆放图



40 位高压罐位置摆放图

40 位超高压罐位置摆放图

部分常用有机溶剂的极性表

一般介电常数 ε>15 者,称之为极性溶剂,而介电常数 ε<15 者决不能单独作为反应样品进行微波加热, 否则会造成磁控管打火,烧坏仪器。如果实验中所用试剂为非极性时,在不影响实验的情况下,应该混合 加入极性溶剂或者极性物质以利反应进行,如:碳化硅。

溶剂	介电常数 (ε)	溶剂	介电常数 (ε)	溶剂	介电常数(ε)
三甲基苯	1.90	丁酸乙酯	5.10	甲丙酮	16.80
环己烷	2.02	溴苯	5.17	苯乙酮	17.30
四氯化碳	2.24	丁胺	5.40	苯甲醛	17.80
1,2-二氧六环	2.25	丁酸甲酯	5.60	丁醇	17.80
苯	2.30	氯苯	5.62	异丙醇	17.90
对二甲苯	2.30	苯甲酸乙酯	6.02	环己酮	18.20
三甲苯	2.30	乙酸乙酯	6.02	苯乙腈	18.30
二甲苯	2.40	乙酸	6.15	丁酮	18.50
甲苯	2.40	乙胺	6.30	异丁醇	18.70
三乙胺	2.42	乙酸甲酯	6.70	丙酮	20.70
萘	2.50	甲酸乙酯	7.10	丁腈	20.70
三甲胺	2.50	1.2-二甲氧基乙烷	7.20	乙酸酐	21.00
邻二甲苯	2.57	苯胺	7.30	甲醛	23.00
二硫化碳	2.60	四氢呋喃	7.58	酒精	24.30
己酸	2.60	正丁醇	7.80	乙醇	24.50
戊酸	2.60	2,2,2-三氟乙醇	8.55	苯甲腈	26.00
乙醛	2.90	三氟乙酸	8.55	乙二腈	27.00
正丁酸	2.90	二氯乙烷	8.93	丙腈	27.70
丁酸	3.00	邻二氯苯	9.93	甲醇	32.70
呋喃	3.00	1,2-二氯乙烷	10.36	硝基苯	34.82
乙苯	3.00	2一甲基 2一丙醇	10.90	硝基甲烷	35.87
丙酸	3.10	丁酸酐	12.00	N,N-二甲基甲酰胺	36.70
丁醚	3.10	吡啶	12.50	乙二醇	37.00
辛酸	3.20	苯甲醇	13.00	乙腈	37.50
三氯乙烯	3.40	二苯甲酮	13.00	N,N-二甲基乙酰胺	37.80
脲	3.50	丁醛	13.40	乙酰胺	41.00
二乙胺	3.60	戊酮	13.90	二甲基亚砜	46.70
苯甲醚	4.33	环氧乙烷	14.00	丙二腈	47.00
乙醚	4.33	环己醇	15.00	甲酸	58.00
苯乙醚	4.50	戊醇	15.80	水	80.40
氯仿	4.81	乙二胺	16.00	甲酰胺	111.00

海能技术支持部

电话 4006186188